Finding twin smooth integers for isogeny-based cryptography

RMIT Cybersecurity Seminar March 29, 2023

Craig Costello
Microsoft Research
craigco@microsoft.com

$$
\begin{aligned}
& 1109496723119 \\
& 1109496723120 \\
& 1109496723121 \\
& 1109496723122 \\
& 1109496723123 \\
& 1109496723124 \\
& 1109496723125 \\
& 1109496723126 \\
& 1109496723127 \\
& 1109496723128 \\
& 1109496723129 \\
& 1109496723130 \\
& 1109496723131 \\
& 1109496723132 \\
& 1109496723133 \\
& 1109496723134
\end{aligned}
$$

```
1109496723119 = 709 • 1564875491
1109496723120 = 2 4 . 3}\mp@subsup{}{2}{2}\cdot5\cdot1873\cdot82272
1109496723121 = 643.1725500347
1109496723122 = 2.79.7022131159
1109496723123 = 3 1153\cdot320756497
1109496723125= 54.7.17\cdot192.312.43
1109496723126 = 2 \cdot3\cdot112 \cdot23\cdot292.41 2 . 47
1109496723128= 23.67.8231.251483
1109496723129 = 3 }\mp@subsup{}{}{4}\cdot2339\cdot585613
1109496723130 = 2 \cdot5 110949672313
1109496723131 = 61.18188470871
1109496723132 = 2
1109496723133 = 1109496723133
1109496723134 = 2. 554748361567
```


Outline

-1. Why?

- 2. Twin smooths and Störmer's theorem
- 3. First attempts

$$
\frac{\text { https://eprint.iacr.org/2019/1145.pdf }}{\text { (C. AsiaCrypt 2020) }}
$$

- 4. The PTE sieve
https://eprint.iacr.org/2020/1283.pdf (C-Meyer-Naehrig. EuroCrypt 2021)
- 5. The CHM algorithm
(Bruno-Corte Real Santos-C-Eriksen-Meyer-Naehrig-Sterner. Preprint.)

1. Why?

Post-quantum cryptography

NGT

Search CSRC $Q \quad \equiv$ CSRC MENU
Information Technology Laboratory
COMPUTER SECURITY RESOURCE CENTER

 NGT

Projectis

Post-Quantum Cryptography PQC

f f

Overview

The Candidates to be Standardized and Round 4 Submissions were announced July 5, 2022. NISTIR 8413, Status Report on the Third Round of the NIST Post-Quantum Cryptography Standardization Process is now available.

$$
\begin{gathered}
\text { PQC Seminars } \\
\text { Next Talk: April 4,2023 }
\end{gathered}
$$

New Call for Proposals:
Call for Additional Digital Signature Schemes for the Post-Quantum Cryptography Standardization Process

PQC License Summary \& Excerpts

Background

NIST initiated a process to solicit, evaluate, and standardize one or more quantum-resistant public-key cryptographic algorithms. Full details can be found in the Post-Quantum Cryptography Standardization page.

In recent years, there has been a substantial amount of research on quantum computers - machines that exploit quantum mechanical phenomena to solve mathematical problems that are difficult or intractable for conventional computers. If large-scale quantum computers are ever built, they will be able to break many of the public-key cryptosystems currently in use. This would seriously compromise the confidentiality and integrity of digital communications on the Internet and elsewhere. The goal of postquantum crvptoaraphy (also called quantum-resistant crvptography) is to develop crvptographic systems that are secure against

B PROJECT LINKS

Overview

FAQs
News \& Updates
Events

Publications

Presentations
ADDITIONAL PAGES
Post-Quantum Cryptography Standardization
Call for Proposals
Example Files
Round 1 Submissions
Round 2 Submissions
Round 3 Submissions
Round 3 Seminars
Round 4 Submissions
Selected Algorithms 2022
Workshops and Timeline
https://csrc.nist.gov/projects/post-quantum-cryptography

Compact post-quantum isogeny-based protocols

B-SIDH
Keys = 186B
httos//eprintiacrorga/2019/1145.pdf

$$
\begin{gathered}
\text { SQI-Sign } \\
(\text { Keys, Sig })=(64 B, 204 B)
\end{gathered}
$$

https://eprint.iacr.org/2020/1240.pdf

- Both schemes require prime $\boldsymbol{p}=\mathbf{2 m}+\mathbf{1}$
- Performance of both depends on largest prime in $(\boldsymbol{m}, \boldsymbol{m}+\mathbf{1})$

Smoothness is harder than primeness

- Problem: find a prime p where $p^{2}-1=(p-1)(p+1)$ is as smooth as possible
- Restated: find large twins $(m, m+1)$ as smooth as possible, then hope that $2 m+1=p$, a prime
- In practice: find enough large smooth twins $(m, m+1)$ to ensure that prime sums are found
- This talk: find large $\left(\approx 2^{256}\right)$ twins $(m, m+1)$ as smooth as possible

2. Twin smooths and
 Störmer's theorem

Smoothness

Defl: An integer is said to be B-smooth if it has no prime factors larger than B

Defn: Two consecutive integers m and $m+1$ are B-smooth "twins" if $m \cdot(m+1)$ is B-smooth

Twin smooths

> Goal: find p where $p \pm 1$ both smooth Equiv: find $(m, m+1)$ smooth with $2 m+1$ prime

- Largest 2 -smooth twins $(1,2)$.
- Largest 3 -smooth twins $(8,9)$.
- Largest 5 -smooth twins $(80,81)$.
- Largest 113-smooth twins have $m=19316158377073923834000 \approx 2^{74}$
- Largest 113 -smooth twins with prime sum $m=75954150056060186624 \approx 2^{66}$
- Largest B-smooth twins requires solving $2^{\pi(B)}$ Pell equations (Störmer's theorem)

Limits of Störmer's theorem

Theorem: $x-1$ and $x+1$ both B-smooth iff (x, y) is a solution of the Pell equation

$$
x^{2}-D y^{2}=1
$$

where D and y are also B-smooth and D is square-free.

```
Sieving: search over D = Пqqi, prime q}\mp@subsup{q}{i}{}\leq
    if (x,y) is a solution and y is B-smooth, then test if }x\mathrm{ is prime
```

E.g.: $\quad D=5 \cdot 7 \cdot 29 \cdot 47 \cdot 59 \cdot 61 \cdot 73 \cdot 97 \cdot 103$, found with $B=113 \quad(\pi(B)=30)$

Solution is (x, y) with $x=38632316754147847668001$ and y being B-smooth

$$
\begin{aligned}
& 19316158377073923834000=2^{4} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 23^{2} \cdot 29 \cdot 47 \cdot 59 \cdot 61 \cdot 73 \cdot 97 \cdot 103, \\
& 19316158377073923834001=13^{2} \cdot 31^{2} \cdot 37^{2} \cdot 43^{4} \cdot 71^{4} .
\end{aligned}
$$

These are largest $\left(\approx 2^{77}\right)$ twins found by solving 2^{30} Pell equations $: \dot{ }$

Limits of Störmer's theorem

e.g. $D=2 \cdot 3 \cdot 7 \cdot 139 \cdot 1021$ with $B=2^{22}$

$$
\begin{gathered}
\left(x_{2}, y_{2}\right)=(80067188866438897846454051644627670308348650805727541734401, \\
32795153233870014069122017732204061523056363527733967840) \\
p-1=2^{10} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 17^{2} \cdot 41^{2} \cdot 43^{2} \cdot 53^{2} \cdot 139 \cdot 523^{2} \cdot 1021 \cdot 24547^{2} \cdot 95651^{2} \cdot 175061^{2}, \\
p+1=2 \cdot 11^{2} \cdot 31^{2} \cdot 2011^{2} \cdot 7207^{2} \cdot 22709^{2} \cdot 23041^{2} \cdot 42257^{2} \cdot 1831021^{2} .
\end{gathered}
$$

3. First attempts...

Smoothness probability

The probability that m is $m^{1 / u}$-smooth is $\approx \rho(u)$ as $m \rightarrow \infty$

$$
\text { Suppose we take a random } m \in\left[0,2^{256}\right)
$$

- The probability that m is 2^{128}-smooth is $\approx \rho(2)=0.3069$
- The probability that m is 2^{64}-smooth is $\approx \rho(4)=0.0049$
- The probability that m is 2^{32}-smooth is $\approx \rho(8)=3.2 \cdot 10^{-8}$
- The probability that m is 2^{16}-smooth is $\approx \rho(16)=1.1 \cdot 10^{-21}$

u	$\rho(u)$
1	1
2	3.0685282×10^{-1}
3	4.8608388×10^{-2}
4	4.9109256×10^{-3}
5	3.5472470×10^{-4}
6	1.9649696×10^{-5}
7	8.7456700×10^{-7}
8	3.2320693×10^{-8}
9	1.0162483×10^{-9}
10	$2.7701718 \times 10^{-11}$

Prior methods

$$
m \approx 2^{256} \quad B=2^{16}
$$

Method 1 (Naïve): search smooth $m \approx 2^{256}$, check $m \pm 1$

$m+1$

$\operatorname{Pr}($ smooth $) \approx 2^{-70}$
Method 2 (XGCD): search smooth coprime $a, b \approx 2^{128}$ set $m=|a s|$ and $m+1=|b t|$

a	s
t	b
$\operatorname{Pr}($ smooth $) \approx 2^{-50}$	

Method 3 (Power): search $(m, m-1)=\left(x^{n}, x^{n}-1\right)$,

$$
\text { egg. }\left(x^{6}, x^{6}-1\right)=\left(x^{6},(x+1)(x-1)\left(x^{2}+x-1\right)\left(x^{2}-x+1\right)\right)
$$

Method 1:
 naïve $m \approx 2^{256} \quad B=2^{16}$

Search smooth $m \approx 2^{256}$, check $m \pm 1$

The probability that $m+1$ is 2^{16}-smooth is $\approx \rho(16)=1.1 \cdot 10^{-21} \approx 2^{-70}$

m	
$m+1$	$\operatorname{Pr}($ smooth $) \approx 2^{-70}$

Method 2:

Recall that if $\operatorname{GCD}(a, b)=1$, then $\exists s, t \in \mathbb{Z}$ such that

$$
a s+b t=1
$$

e.g. $a=2^{5}=32$ and $b=3^{3}=27$, then (extended Euclid) gives $(s, t)=(11,-13)$

$$
\begin{aligned}
m & =3^{3} \cdot 13 \\
m+1 & =2^{5} \cdot 11
\end{aligned}
$$

search smooth coprime $a, b \approx 2^{128}$ set $m=|a s|$ and $m+1=|b t|$

a	s		
t	b		
$\operatorname{Pr}($ smooth $) \approx 2^{-50}$			

Method 3: $(m+1, m)=\left(x^{n}, x^{n}-1\right), \quad m \approx 2^{256}$

- Choose small $n \in \mathbb{N}$ such that $x^{n}-1$ factors favorably...
- Larger n means smaller factors, but too large means not enough x to search over
- Sweet spot for $m \approx 2^{256}$ is $n \in\{4,6\}$

Method 3 (Power): search $(m+1, m)=\left(x^{n}, x^{n-1}\right)$,

x	e.g. $\left(x^{6}, x^{6}-1\right)=\left(x^{6},(x+1)(x-1)\left(x^{2}-x+1\right)\left(x^{2}+x+1\right)\right)$		
$x+1$	$x-1$	$x^{2}+x-1$	$x^{2}+x-1$

Method 3: examples

$m+1=x^{6}$
$m=(x+1)(x-1)\left(x^{2}-x+1\right)\left(x^{2}+x+1\right)$

$$
B=2^{6}
$$

$$
B=2^{20}
$$

$\left(2^{3} \cdot 3^{4} \cdot 17 \cdot 19 \cdot 31 \cdot 37 \cdot 53^{2}\right)^{6}$

$$
x^{6}
$$

$$
\begin{aligned}
& (x+1) \\
& \cdot \\
& \cdot(x-1) \\
& \cdot \\
& \cdot\left(x^{2}-x+1\right) \\
& \left.x^{2}+x+1\right)
\end{aligned}
$$

$$
B=2^{12}
$$

$\left(5^{3} \cdot 101 \cdot 211 \cdot 461 \cdot 2287\right)^{6}$

$$
B=2^{19}
$$

(2.3 $2109 \cdot 8821 \cdot 486839)$	$(x+1)$
$\cdot\left(2^{3} \cdot 7 \cdot 37 \cdot 107 \cdot 1607 \cdot 7883\right)$	- $(x-1)$
($3 \cdot 79 \cdot 433 \cdot 487 \cdot 5701 \cdot 6199 \cdot 57037 \cdot 78301$)	- $\left(x^{2}-x+1\right)$
(13 199 - $349 \cdot 1993 \cdot 3067 \cdot 6373 \cdot 11497 \cdot 19507)$	$\cdot\left(x^{2}+x+1\right)$

4. The PTE sieve

- The problem with Method 3 was the higher degree terms

$$
\text { e.g. }\left(x^{6}, x^{6}-1\right)=\left(x^{6},(x+1)(x-1)\left(x^{2}-x+1\right)\left(x^{2}+x+1\right)\right)
$$

- With $x \in\left[0,2^{42}\right)$, the probability of x or $x-1$ or $x+1$ being B-smooth is far greater than that of $x^{2}-x+1$ or $x^{2}+x-1$
e.g. with $B=2^{14}$,

$$
\begin{array}{r}
\operatorname{Pr}(x \text { is smooth }) \approx \rho(3) \approx 0.0486 \quad\left(\rho(3)^{2} \approx 0.0023\right) \\
\operatorname{Pr}\left(x^{2}-x+1 \text { is smooth }\right) \approx \rho(6) \approx 0.0000196
\end{array}
$$

- IDEA: Can we find $(m+1, m)=(f(x), g(x))$ where $f(x)$ and $g(x)$ split completely into linear terms, like

$$
f(x)=x^{2} \quad \text { and } g(x)=x^{2}-1=(x+1)(x-1)
$$

but with larger degrees?

Split polynomials in $\mathbb{Q}[x]$ with constant differences

$$
\begin{aligned}
f(x) & =(x-1)(x-2)(x-9)(x-10) \\
& =x^{4}-22 x^{3}+149 x^{2}-308 x+180 \\
& =g(x)+180
\end{aligned}
$$

$$
(m+1, m)=(f(x) / 180, g(x) / 180)
$$

$$
\text { (80/180 of the residues give } f(x) \equiv g(x) \equiv 0 \bmod 180)
$$

Rather than searching m such that $m+1$ is smooth...

m

....search x such that $x-1, x-2, \ldots, x-11$ are all smooth

x	$x-4$	$x-7$	$x-11$
$x-1$	$x-2$	$x-9$	$x-10$

The Prouhet-Tarry-Escott (PTE) problem
(Ideal) PTE problem: find disjoint multisets $\left\{a_{1}, \ldots a_{n}\right\}$ and $\left\{b_{1}, \ldots b_{n}\right\}$ with

$$
\begin{aligned}
a_{1}+\cdots+a_{n} & =b_{1}+\cdots+b_{n} \\
a_{1}^{2}+\cdots+a_{n}^{2} & =b_{1}^{2}+\cdots+b_{n}^{2} \\
& \vdots \\
a_{1}^{n-1}+\cdots+a_{n}^{n-1} & =b_{1}^{n-1}+\cdots+b_{n}^{n-1}
\end{aligned}
$$

e.g. $\{0,4,7,11\}$ and $\{1,2,9,10\}$, since

$$
\begin{array}{rlrl}
0+4+7+11 & =1+2+9+10 & & =22 \\
0^{2}+4^{2}+7^{2}+11^{2} & =1^{2}+2^{2}+9^{2}+10^{2} & & =186 \\
0^{3}+4^{3}+7^{3}+11^{3}=1^{3}+2^{3}+9^{3}+10^{3} & & =1738
\end{array}
$$

The Prouhet-Tarry-Escott (PTE) problem
(Ideal) PTE problem: find disjoint multisets $\left\{a_{1}, \ldots a_{n}\right\}$ and $\left\{b_{1}, \ldots b_{n}\right\}$ with

$$
\begin{aligned}
a_{1}+\cdots+a_{n} & =b_{1}+\cdots+b_{n} \\
a_{1}^{2}+\cdots+a_{n}^{2} & =b_{1}^{2}+\cdots+b_{n}^{2} \\
& \vdots \\
a_{1}^{n-1}+\cdots+a_{n}^{n-1} & =b_{1}^{n-1}+\cdots+b_{n}^{n-1}
\end{aligned}
$$

e.g. $\{0,4,7,11\}$ and $\{1,2,9,10\}$, since

$$
\begin{aligned}
0+4+7+11 & =1+2+9+10 & & =22 \\
0^{2}+4^{2}+7^{2}+11^{2} & =1^{2}+2^{2}+9^{2}+10^{2} & & =186 \\
0^{3}+4^{3}+7^{3}+11^{3} & =1^{3}+2^{3}+9^{3}+10^{3} & & =1738
\end{aligned}
$$

$$
\text { PTE solutions } \leftrightarrow \operatorname{split} f(x), g(x) \in \mathbb{Z}[x] \text { with } f-g \in \mathbb{Z}
$$

$$
g(x)=x(x-4)(x-7)(x-11) \quad f(x)=(x-1)(x-2)(x-9)(x-10)
$$

Known PTE solutions

For $m, m+1$ in $\left[0,2^{256}\right), n=6$ is a sweet spot!

$$
\begin{gathered}
f(x)=(x-2)^{2}(x-21)^{2}(x-40)^{2} \\
g(x)=x(x-5)(x-16)(x-26)(x-37)(x-42) \\
\operatorname{Pr}(\text { smooth }) \approx 2^{-31}
\end{gathered}
$$

$$
B=2^{16}, x \approx 2^{43}
$$

PTE sieve: example $\quad B=2^{15}$

$\{0,3,5,11,13,16\}=5\{1,1,8,8,15,15\}$

$$
\begin{gathered}
g(x)=x(x-3)(x-5)(x-11)(x-13)(x-16) \quad f(x)=(x-1)^{2}(x-8)^{2}(x-15)^{2} \\
u=5170314186755 \\
f(x)-g(x)=14400 \text { and } f(u) \equiv g(u) \equiv 0 \bmod 14400 \\
m=g(u) / 14400 \text { and } m+1=f(u) / 14400 \\
p=2 m+1 \text { is prime!!! }
\end{gathered}
$$

$$
p+1=2 \cdot 3^{2} \cdot 23^{2} \cdot 41^{2} \cdot 71^{2} \cdot 83^{2} \cdot 919^{2} \cdot 1117^{2} \cdot 1163^{2} \cdot 1237^{2} \cdot 6571^{2} \cdot 11927^{2} \cdot 18637^{2} \cdot 32029^{2}
$$

$$
p=2653194648913198538763028808847267222102564753030025033104122760223436801
$$

```
p-1= 2 12 \cdot5 5}\cdot\mp@subsup{7}{}{2}\cdot1\mp@subsup{1}{}{2}\cdot1\mp@subsup{3}{}{2}\cdot17\cdot29\cdot31\cdot43\cdot53\cdot103\cdot113\cdot181\cdot191\cdot211\cdot277\cdot557\cdot1093\cdot2663
```


5. The CHM algorithm

The Conrey-Holmstrom-McLaughin (CHM) algorithm

$$
\text { Start with } \quad S^{(0)}=\{1,2, \ldots, B-1\}
$$

Test all distinct $r, s \in S^{(0)}$:

$$
\frac{t}{t^{\prime}}=\frac{r}{r+1} \cdot \frac{s+1}{s}
$$

if $t^{\prime}=t+1$, then include t in next iteration $S^{(1)}$

$$
\text { Repeat until } S^{(d)}=S^{(d-1)}
$$

The CHM algorithm: example ($B=5$)

$$
S^{(0)}=\{1,2,3,4\}
$$

$$
\left[\frac{8}{9}=\frac{2}{2+1} \cdot \frac{3+1}{3} \quad\left[\frac{5}{6}=\frac{2}{2+1} \cdot \frac{4+1}{4}\right] \quad \frac{15}{16}=\frac{3}{3+1} \cdot \frac{4+1}{4}\right.
$$

$$
S^{(1)}=\{1,2,3,4,5,8,15\}
$$

$$
S^{(2)}=\{1,2,3,4,5,8,9,15,24\}
$$

$$
S^{(3)}=\{1,2,3,4,5,8,9,15,24,80\}
$$

$$
S^{(4)}=S^{(3)} .
$$

CHM vs. Störmer

2011 - Luca and Najman (Störmer's theorem, Lehmer's algorithm)

- computed all 13,374 twins with $B=100$
- solved all $2^{\pi(100)}=2^{25}$ Pell equations
- 15 days on a quad-core 2.66 GHz
- largest pair 58 bits

2012 - Conrey-Holmstrom-McLaughlin algorithm

- computed 13,333 (all but 41 twins) in 20 minutes (same CPU)
- moved to $B=200$ and found 346,192 pairs in 2 weeks
- largest pair 79 bits

```
589864439608716991201560= 2 3 \cdot3 3}\cdot5\cdot\mp@subsup{7}{}{2}\cdot1\mp@subsup{1}{}{2}\cdot17\cdot31\cdot592'83\cdot13\mp@subsup{9}{}{2
                                    173\cdot181, and
589864439608716991201561 = 13 2}\cdot11\mp@subsup{3}{}{2}\cdot12\mp@subsup{7}{}{2}\cdot13\mp@subsup{7}{}{2}\cdot15\mp@subsup{1}{}{2}\cdot19\mp@subsup{9}{}{2}
```


Cryptographic smooth neighbours

- A bunch of optimisations to CHM
- Ran to convergence $S^{(d)}=S^{(d-1)}$ up to $B=547$ finding $82,026,426$ pairs in a few weeks
- Störmer would have needed to solve 2^{101} Pell equations
- Largest pair still only 122 bits $*$

$$
\begin{aligned}
r= & 5^{4} \cdot 7 \cdot 13^{2} \cdot 17^{2} \cdot 19 \cdot 29 \cdot 41 \cdot 109 \cdot 163 \cdot 173 \cdot 239 \cdot 241^{2} \cdot 271 \cdot 283 \\
& \cdot 499 \cdot 509, \quad \text { and } \\
r+1= & 2^{8} \cdot 3^{2} \cdot 31^{2} \cdot 43^{2} \cdot 47^{2} \cdot 83^{2} \cdot 103^{2} \cdot 311^{2} \cdot 479^{2} \cdot 523^{2} .
\end{aligned}
$$

- See paper for how these can be combined with the prior methods to find larger/secure SQISign parameters...

Future work

better methods / smoother twins?

