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1109496723119 = 709 ⋅ 1564875491
1109496723120 = 24 ⋅ 32 ⋅ 5 ⋅ 1873 ⋅ 822727
1109496723121 = 643 ⋅ 1725500347
1109496723122 = 2 ⋅ 79 ⋅ 7022131159
1109496723123 = 3 ⋅ 1153 ⋅ 320756497
1109496723124 = 22 ⋅ 89 ⋅ 27953 ⋅ 111493
1109496723125 = 54 ⋅ 7 ⋅ 17 ⋅ 192 ⋅ 312 ⋅ 43
1109496723126 = 2 ⋅ 3 ⋅ 112 ⋅ 23 ⋅ 292 ⋅ 412 ⋅ 47
1109496723127 = 13 ⋅ 467 ⋅ 12401 ⋅ 14737
1109496723128 = 23 ⋅ 67 ⋅ 8231 ⋅ 251483
1109496723129 = 34 ⋅ 2339 ⋅ 5856131
1109496723130 = 2 ⋅ 5 ⋅ 110949672313
1109496723131 = 61 ⋅ 18188470871
1109496723132 = 22 ⋅ 3 ⋅ 73 ⋅ 691 ⋅ 390097
1109496723133 = 1109496723133
1109496723134 = 2 ⋅ 554748361567
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Outline

• 1. Why?

• 2. Twin smooths and Störmer’s theorem 

• 3. First attempts

• 4. The PTE sieve

• 5. The CHM algorithm

https://eprint.iacr.org/2019/1145.pdf
(C. AsiaCrypt 2020) 

https://eprint.iacr.org/2020/1283.pdf
(C-Meyer-Naehrig. EuroCrypt 2021) 

https://eprint.iacr.org/2022/1439.pdf
(Bruno-Corte Real Santos-C-Eriksen-Meyer-Naehrig-Sterner. Preprint.) 

https://eprint.iacr.org/2019/1145.pdf
https://eprint.iacr.org/2020/1283.pdf
https://eprint.iacr.org/2022/1439.pdf


1. Why?



https://csrc.nist.gov/projects/post-quantum-cryptography

Post-quantum cryptography

https://csrc.nist.gov/projects/post-quantum-cryptography


B-SIDH SQI-Sign
Keys = 186B (Keys, Sig) = (64B, 204B)

• Both schemes require prime 𝒑 = 𝟐𝒎+ 𝟏

• Performance of both depends on largest prime in (𝒎,𝒎 + 𝟏)

Compact post-quantum isogeny-based protocols

https://eprint.iacr.org/2019/1145.pdf https://eprint.iacr.org/2020/1240.pdf

https://eprint.iacr.org/2019/1145.pdf
https://eprint.iacr.org/2019/1145.pdf


• Problem: find a prime 𝑝 where 𝑝2 − 1 = (𝑝 − 1)(𝑝 + 1) is as 
smooth as possible

• Restated: find large twins (𝑚,𝑚 + 1) as smooth as possible, then 
hope that 2𝑚 + 1 = 𝑝, a prime

• In practice: find enough large smooth twins (𝑚,𝑚 + 1) to ensure 
that prime sums are found

• This talk: find large (≈ 2256) twins (𝑚,𝑚 + 1) as smooth as possible

Smoothness is harder than primeness



2. Twin smooths 
and 

Störmer’s theorem 



Smoothness

Defn: An integer is said to be 𝐵-smooth if it has no prime factors larger than 𝐵

Defn: Two consecutive integers 𝑚 and 𝑚+1 are 𝐵-smooth “twins” if 
𝑚 ⋅ (𝑚+1) is 𝐵-smooth 



Goal: find 𝑝 where 𝑝 ± 1 both smooth

Equiv: find (𝑚,𝑚 + 1) smooth with 2𝑚 + 1 prime

Twin smooths

• Largest 2-smooth twins 1,2 .

• Largest 3-smooth twins 8,9 .

• Largest 5-smooth twins 80,81 .

• Largest 113-smooth twins have 𝑚 = 19316158377073923834000 ≈ 274

• Largest 113-smooth twins with prime sum 𝑚 = 75954150056060186624 ≈ 266

• Largest 𝐵-smooth twins requires solving 2𝜋 𝐵 Pell equations (Störmer’s theorem)

⋮

⋮



Limits of Störmer’s theorem

Theorem: 𝑥 − 1 and 𝑥 + 1 both 𝐵-smooth iff (𝑥, 𝑦) is a solution of the Pell equation 

𝑥2 − 𝐷𝑦2 = 1

where 𝐷 and 𝑦 are also 𝐵-smooth and 𝐷 is square-free.

Sieving:    search over 𝐷 = ∏𝑞𝑖 , prime 𝑞𝑖 ≤ 𝐵
if 𝑥, 𝑦 is a solution and 𝑦 is 𝐵-smooth, then test if 𝑥 is prime

E.g.:    𝐷 = 5 ⋅ 7 ⋅ 29 ⋅ 47 ⋅ 59 ⋅ 61 ⋅ 73 ⋅ 97 ⋅ 103 , found with 𝐵 = 113 (𝜋 𝐵 = 30)

Solution is (𝑥, 𝑦) with 𝑥 = 38632316754147847668001 and 𝑦 being 𝐵 −smooth

These are largest (≈ 277) twins found by solving 230 Pell equations 



Limits of Störmer’s theorem

e.g. 𝐷 = 2 ⋅ 3 ⋅ 7 ⋅ 139 ⋅ 1021 with 𝐵 = 222



3. First attempts…



Smoothness probability

The probability that 𝑚 is 𝑚1/𝑢-smooth is ≈ 𝜌(𝑢) as 𝑚 →∞

Suppose we take a random 𝑚 ∈ [0,2256)

• The probability that 𝑚 is 2128-smooth is ≈ 𝜌 2 = 0.3069

• The probability that 𝑚 is 264-smooth is ≈ 𝜌 4 = 0.0049

• The probability that 𝑚 is 232-smooth is ≈ 𝜌 8 = 3.2 ⋅ 10−8

• The probability that 𝑚 is 216-smooth is ≈ 𝜌 16 = 1.1 ⋅ 10−21



Method 1 (Naïve): search smooth 𝑚 ≈ 2256, check 𝑚± 1

Prior methods     𝑚 ≈ 2256 𝐵 = 216

Method 2 (XGCD): search smooth coprime 𝑎, 𝑏 ≈ 2128 set 𝑚 = |𝑎𝑠| and 𝑚 + 1 = |𝑏𝑡|

Method 3 (Power): search 𝑚,𝑚 − 1 = (𝑥𝑛, 𝑥𝑛 − 1), 
e.g. (𝑥6, 𝑥6 − 1) = (𝑥6, (𝑥 + 1)(𝑥 − 1)(𝑥2 + 𝑥 − 1)(𝑥2 − 𝑥 + 1))

Pr(smooth) ≈ 2−70

Pr(smooth) ≈ 2−50

Pr(smooth) ≈ 2−36.2

𝑚
𝑚 + 1

𝑎
𝑡

𝑠

𝑏



Method 1:            naïve          𝑚 ≈ 2256 𝐵 = 216

Search smooth 𝑚 ≈ 2256, check 𝑚 ± 1

Pr(smooth) ≈ 2−70

The probability that 𝑚+ 1 is 216-smooth is ≈ 𝜌 16 = 1.1 ⋅ 10−21 ≈ 2−70

𝑚
𝑚 + 1



Method 2:            XGCD        𝑚 ≈ 2256 𝐵 = 216

Recall that if GCD 𝑎, 𝑏 = 1, then ∃ 𝑠, 𝑡 ∈ ℤ such that 

𝑎𝑠 + 𝑏𝑡 = 1

e.g. 𝑎 = 25 = 32 and 𝑏 = 33 = 27 , then (extended Euclid) gives 𝑠, 𝑡 = 11,−13

𝑚 = 33 ⋅ 13
𝑚 + 1 = 25 ⋅ 11

search smooth coprime 𝑎, 𝑏 ≈ 2128 set 𝑚 = |𝑎𝑠| and 𝑚 + 1 = |𝑏𝑡|

Pr(smooth) ≈ 2−50

𝑎
𝑡

𝑠

𝑏



Method 3:  𝑚+1,𝑚 = (𝑥𝑛, 𝑥𝑛 −1), 𝑚 ≈ 2256

Method 3 (Power): search 𝑚+ 1,𝑚 = (𝑥𝑛, 𝑥𝑛−1), 
e.g. (𝑥6, 𝑥6 − 1) = (𝑥6, (𝑥 + 1)(𝑥 − 1)(𝑥2 − 𝑥 + 1)(𝑥2 + 𝑥 + 1))

Pr(smooth) ≈ 2−36.2

• Choose small 𝑛 ∈ ℕ such that 𝑥𝑛 − 1 factors favorably… 

• Larger 𝑛 means smaller factors, but too large means not enough 𝑥 to search over

• Sweet spot for 𝑚 ≈ 2256 is 𝑛 ∈ {4,6}

𝑥2 + 𝑥 − 1 𝑥2 + 𝑥 − 1𝑥 − 1𝑥 + 1

𝑥



Method 3: examples

𝑚 + 1 = 𝑥6 𝑚 = (𝑥 + 1)(𝑥 − 1)(𝑥2 − 𝑥 + 1)(𝑥2 + 𝑥 + 1)

( 7 ⋅ 13 ⋅ 269 ⋅ 439 ⋅ 62753)

⋅ (881 ⋅ 15803 ⋅ 48437)

⋅ 43 ⋅ 883 ⋅ 20161 ⋅ 24043 ⋅ 34843 ⋅ 709153

⋅ (73 ⋅ 103 ⋅ 1321 ⋅ 5479 ⋅ 9181 ⋅ 12541 ⋅ 72577)

𝑥 + 1
⋅ 𝑥 − 1
⋅ 𝑥2 − 𝑥 + 1
⋅ (𝑥2 + 𝑥 + 1)

23 ⋅ 34 ⋅ 17 ⋅ 19 ⋅ 31 ⋅ 37 ⋅ 532 6 𝑥6

(2 ⋅ 3 ⋅ 109 ⋅ 8821 ⋅ 486839)

⋅ (23 ⋅ 7 ⋅ 37 ⋅ 107 ⋅ 1607 ⋅ 7883)

⋅ 3 ⋅ 79 ⋅ 433 ⋅ 487 ⋅ 5701 ⋅ 6199 ⋅ 57037 ⋅ 78301

⋅ (13 ⋅ 199 ⋅ 349 ⋅ 1993 ⋅ 3067 ⋅ 6373 ⋅ 11497 ⋅ 19507)

𝑥 + 1
⋅ 𝑥 − 1
⋅ 𝑥2 − 𝑥 + 1
⋅ (𝑥2 + 𝑥 + 1)

53 ⋅ 101 ⋅ 211 ⋅ 461 ⋅ 2287 6
𝑥6

𝐵 = 26

𝐵 = 212 𝐵 = 219

𝐵 = 220



4. The PTE sieve



• The problem with Method 3 was the higher degree terms

e.g. (𝑥6, 𝑥6 − 1) = (𝑥6, (𝑥 + 1)(𝑥 − 1)(𝑥2 − 𝑥 + 1)(𝑥2 + 𝑥 + 1))

• With 𝑥 ∈ [0,242), the probability of 𝑥 or 𝑥 − 1 or 𝑥 + 1 being 𝐵-smooth is far greater 
than that of 𝑥2 − 𝑥 + 1 or 𝑥2 + 𝑥 − 1

e.g. with 𝐵 = 214 , Pr 𝑥 is smooth ≈ 𝜌 3 ≈ 0.0486 (𝜌 3 2 ≈ 0.0023)
Pr 𝑥2 − 𝑥 + 1 is smooth ≈ 𝜌 6 ≈ 0.0000196

• IDEA: Can we find 𝑚 + 1,𝑚 = 𝑓 𝑥 , 𝑔 𝑥 where 𝑓 𝑥 and 𝑔(𝑥) split completely
into linear terms, like

𝑓 𝑥 = 𝑥2 and   𝑔 𝑥 = 𝑥2 − 1 = 𝑥 + 1 𝑥 − 1 ,

but with larger degrees?



𝑓 𝑥 = 𝑥 − 1 𝑥 − 2 𝑥 − 9 𝑥 − 10

Split polynomials in ℚ 𝑥 with constant differences

= 𝑥4 − 22𝑥3 + 149𝑥2 − 308𝑥 + 180
= 𝑔 𝑥 + 180

𝑔 𝑥 = 𝑥 𝑥 − 4 𝑥 − 7 𝑥 − 11

= 𝑥4 − 22𝑥3 + 149𝑥2 − 308𝑥

𝑚 + 1,𝑚 = 𝑓 𝑥 /180, 𝑔 𝑥 /180

Rather than searching 𝑚 such that 𝑚+1 is smooth…

𝑚
𝑚 + 1

𝑥 − 1 𝑥 − 2 𝑥 − 9 𝑥 − 10

𝑥 𝑥 − 4 𝑥 − 7 𝑥 − 11

….search 𝑥 such that 𝑥 −1, 𝑥 −2, …, 𝑥 −11 are all smooth   

(80/180 of the residues give 𝑓 𝑥 ≡ 𝑔 𝑥 ≡ 0 mod 180)



(Ideal) PTE problem: find disjoint multisets {𝑎1, … 𝑎𝑛} and {𝑏1, … 𝑏𝑛} with

𝑎1+⋯+ 𝑎𝑛 = 𝑏1 +⋯+ 𝑏𝑛
𝑎1
2 +⋯+ 𝑎𝑛

2 = 𝑏1
2 +⋯+ 𝑏𝑛

2

⋮

𝑎1
𝑛−1 +⋯+ 𝑎𝑛

𝑛−1 = 𝑏1
𝑛−1 +⋯+ 𝑏𝑛

𝑛−1

The Prouhet-Tarry-Escott (PTE) problem

e.g. {0,4,7,11} and {1,2,9,10}, since

0 + 4 + 7 + 11 = 1 + 2 + 9 + 10

02 + 42 + 72 + 112 = 12 + 22 + 92 + 102

03 + 43 + 73 + 113 = 13 + 23 + 93 + 103

= 22

= 186

= 1738



(Ideal) PTE problem: find disjoint multisets {𝑎1, … 𝑎𝑛} and {𝑏1, … 𝑏𝑛} with

𝑎1+⋯+ 𝑎𝑛 = 𝑏1 +⋯+ 𝑏𝑛
𝑎1
2 +⋯+ 𝑎𝑛

2 = 𝑏1
2 +⋯+ 𝑏𝑛

2

⋮

𝑎1
𝑛−1 +⋯+ 𝑎𝑛

𝑛−1 = 𝑏1
𝑛−1 +⋯+ 𝑏𝑛

𝑛−1

The Prouhet-Tarry-Escott (PTE) problem

e.g. {0,4,7,11} and {1,2,9,10}, since

0 + 4 + 7 + 11 = 1 + 2 + 9 + 10

02 + 42 + 72 + 112 = 12 + 22 + 92 + 102

03 + 43 + 73 + 113 = 13 + 23 + 93 + 103

PTE solutions ↔ split 𝑓 𝑥 , 𝑔 𝑥 ∈ ℤ[𝑥] with 𝑓 − 𝑔 ∈ ℤ

= 22

= 186

= 1738

𝑓 𝑥 = 𝑥 − 1 𝑥 − 2 𝑥 − 9 𝑥 − 10𝑔 𝑥 = 𝑥 𝑥 − 4 𝑥 − 7 𝑥 − 11



For 𝑚,𝑚 + 1 in [0,2256), 𝑛 = 6 is a sweet spot!

Known PTE solutions

⋮

⋮

𝑓 𝑥 = 𝑥 − 1 𝑥 − 2 𝑥 − 10 𝑥 − 12 (𝑥 − 20)(𝑥 − 21)

𝑔 𝑥 = 𝑥(𝑥 − 5)(𝑥 − 6)(𝑥 − 16)(𝑥 − 17)(𝑥 − 22)

𝑓 𝑥 = 𝑥 − 2 2 𝑥 − 21 2 𝑥 − 40 2

𝑔 𝑥 = 𝑥(𝑥 − 5)(𝑥 − 16)(𝑥 − 26)(𝑥 − 37)(𝑥 − 42)

𝐵 = 216, 𝑥 ≈ 243

Pr(smooth) ≈ 2−31

Pr(smooth) ≈ 2−41



PTE sieve: example 𝐵 = 215

0,3,5,11,13,16 =5 {1,1,8,8,15,15}

𝑢 = 5170314186755

𝑓 𝑥 = 𝑥 − 1 2 𝑥 − 8 2 𝑥 − 15 2𝑔 𝑥 = 𝑥(𝑥 − 3)(𝑥 − 5)(𝑥 − 11)(𝑥 − 13)(𝑥 − 16)

𝑓 𝑥 − 𝑔 𝑥 = 14400 and 𝑓 𝑢 ≡ 𝑔 𝑢 ≡ 0 mod 14400

𝑚 = 𝑔(𝑢)/14400 and 𝑚 + 1 = 𝑓(𝑢)/14400

𝑝 = 2𝑚 + 1 is prime!!!

𝑝 = 2653194648913198538763028808847267222102564753030025033104122760223436801

𝑝 + 1 = 2 ⋅ 32 ⋅ 232 ⋅ 412 ⋅ 712 ⋅ 832 ⋅ 9192 ⋅ 11172 ⋅ 11632 ⋅ 12372 ⋅ 65712 ⋅ 119272 ⋅ 186372 ⋅ 320292

𝑝 − 1 = 212 ⋅ 52 ⋅ 72 ⋅ 112 ⋅ 132 ⋅ 17 ⋅ 29 ⋅ 31 ⋅ 43 ⋅ 53 ⋅ 103 ⋅ 113 ⋅ 181 ⋅ 191 ⋅ 211 ⋅ 277 ⋅ 557 ⋅ 1093 ⋅ 2663
⋅ 2897 ⋅ 3347 ⋅ 4783 ⋅ 7963 ⋅ 8623 ⋅ 9787 ⋅ 19841 ⋅ 31489



5. The CHM algorithm



Start with 𝑆(0) = {1, 2, … , 𝐵 − 1}

The Conrey-Holmstrom-McLaughin (CHM) algorithm 

Test all distinct  𝑟, 𝑠 ∈ 𝑆(0):
𝑡

𝑡′
=

𝑟

𝑟+1
⋅
𝑠+1

𝑠

if 𝑡′ = 𝑡 + 1, then include 𝑡 in next iteration 𝑆(1)

Repeat until 𝑆(𝑑) = 𝑆(𝑑−1)



𝑆(0) = {1, 2, 3, 4}

The CHM algorithm: example (𝐵 = 5)

8

9
=

2

2+1
⋅
3+1

3

5

6
=

2

2+1
⋅
4+1

4

15

16
=

3

3+1
⋅
4+1

4

𝑆(1) = {1, 2, 3, 4, 5, 8, 15}

𝑆(2) = {1, 2, 3, 4, 5, 8, 9, 15, 24}

𝑆(3) = {1, 2, 3, 4, 5, 8, 9, 15, 24, 80}

𝑆(4) = 𝑆(3).



2011 - Luca and Najman (Störmer’s theorem, Lehmer’s algorithm)

- computed all 13,374 twins with 𝐵 = 100

- solved all 2 𝜋 100 = 225 Pell equations

- 15 days on a quad-core 2.66 GHz
- largest pair 58 bits

2012 – Conrey-Holmstrom-McLaughlin algorithm

- computed 13,333 (all but 41 twins) in 20 minutes (same CPU)
- moved to 𝐵 = 200 and found 346,192 pairs in 2 weeks

- largest pair 79 bits 

CHM vs. Störmer



• A bunch of optimisations to CHM

• Ran to convergence 𝑆(𝑑) = 𝑆(𝑑−1) up to 𝐵 = 547 finding 82,026,426 pairs in a few weeks

• Störmer would have needed to solve 2101 Pell equations

• Largest pair still only 122 bits 

• See paper for how these can be combined with the prior methods to find larger/secure 
SQISign parameters…

Cryptographic smooth neighbours



Future work

better methods / smoother twins?
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